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A Vector Implementation of the Fast Fourier 
Transform Algorithm* 

By Bengt Fornberg 

Abstract. A recent article in this journal by D. G. Korn and J. J. Lambiotte, Jr. discusses 
implementations of the FFT algorithm on the CDC STAR-100 vector computer. The 
'Pease'-algorithm is recommended in cases when only a few transforms can be performed 
simultaneously. We show how the use of a different algorithm and of trigonometric tables 
will lead to more than three times faster execution times. The times for large transforms 
increase only about 39% if the tables are eliminated in order to save storage. 

The recent article in this journal: "Computing the Fast Fourier Transform on a 
vector computer" [1] discussed how to code FFTs efficiently for the CDC STAR- 
100 computer. It was observed that different codes should be used dependent on 
the number of transforms that can be performed simultaneously. Two algorithms, 
referred to as the 'Pease' and the 'Stockham' algorithms, were recommended, 
dependent upon whether this number was less than or greater than about ten. The 
purpose of this note is to demonstrate an alternative to the 'Pease'-algorithm which 
significantly improves the computational efficiency. 

To obtain efficient codes on a vector machine like the CDC STAR-100, the 
relative hardware speeds between different machine instructions must be taken into 
account. Operating on long vectors, an addition takes half a machine cycle; a 
multiply and a vector compress (which forms a shorter vector by removing selected 
elements from a longer vector) each take one cycle per operation. However, a 
merge (which forms one long vector by alternatively selecting consecutive elements 
from two shorter vectors) requires three cycles for each operation. A machine cycle 
takes 40 nanoseconds. 

A variety of methods is available for coding the FFT algorithm. References 
[2]-[6] describe some different ways. The algorithm by Glassman [5] appears 
unique in that no data rearrangement by costly 'merges' is required at any step (nor 
any initial or final data permutation). For a scalar code, this advantage is often 
outweighed by the fact that an extra storage vector is required for temporary data. 
However, on the CDC STAR-i 00, the elimination of the expensive 'merge'-opera- 
tions with no increase in operation count gives superior efficiency. 

The Glassman algorithm is described in [5] in terms of a matrix factorization. We 
have implemented it in a very straightforward way in CDC STAR FORTRAN. 
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The first two matrix-vector multiplications (involving only matrix elements 1, -1, i, 
and, -i) are performed separately using only additions and subtractions. 

A transform over one set of N = 2M complex data points (with the real and 
imaginary parts stored in two consecutive vectors) is easily seen to require 

First factor: 

4 add/subtract length N/2. 

Second factor: 

8 add/subtract length N/4. 

Each following factor: 

2 compress length N 
2 multiply length N 

6 add/subtract length N/2. 

The total cost for each factor (after the first two) is therefore ten vector startups 
and 5 N machine cycles. 

We assume that all trigonometric constants have been tabulated in advance. This 
gives the highest possible speed. Actual execution times are shown in Table 1 and 
compared in Tables 2 and 3 with those for the 'Pease' and 'Stockham' algorithms as 
implemented by Korn and Lambiotte, Jr. 

TABLE 1 
Time in milliseconds on the CDC STAR-100 

Number of 
simultaneous Transform size 

transforrms 16 32 64 128 256 512 1024 2048 4096 8192 16384 

1 .17 .23 .35 .52 .91 1.68 3.34 7.03 14.94 32.04 68.97 
2 .18 .28 .43 .77 1.46 2.95 6.29 13.50 29.21 63.33 - 
5 .22 .39 .75 1.49 3.11 6.83 14.98 32.90 72.20 - - 

10 .29 .61 1.24 2.71 5.97 13.32 29.64 65.33 - - - 

20 .44 .96 2.22 5.03 11.46 25.94 58.34 - - - - 

50 .82 2.14 5.10 12.14 28.16 64.82 - - - - - 

100 1.56 4.01 10.00 23.92 56.29 - - - - - - 

TABLE 2 
Execution time for the 'Pease' algorithm divided 

by the time for the present algorithm 

Number of 

simultaneous Transform size 

transforns 64 128 256 512 1024 2048 

1 3.1 3.1 3.0 3.0 2.8 2.6 
5 3.9 3.6 3.5 3.3 3.3 3.2 

10 3.9 3.5 3.2 3.3 3.2 3.2 
20 3.8 3.5 3.3 3.3 3.3 - 
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TABLE 3 
Execution time for the 'Stockham' algorithm divided 

by the time for the present algorithm 

Number of 
simultaneous Transform size 

transforms 64 128 256 512 1024 2048 

1 8.9 11.0 12.5 12.8 13.6 12.9 
5 4.4 4.2 4.1 3.7 3.4 3.1 

10 2.8 2.6 2.3 2.1 1.9 1.8 
50 1.1 1.0 .9 .8 - - 

100 .8 .7 .7 - - - 

The table size for one transform is 2N(log2 N - 2) words (plus another 1/32 of 
this for control vectors). If tables of this size are not acceptable, computational 
speed can be traded against reductions in the table size. With a penalty only in the 
number of vector startups, but with none in the operation count, the size can be 
reduced by a factor of four. An additional factor of two can be gained at the cost 
of one 'vector reverse' operation of length N/4 costing N machine cycles for each 
matrix factor. If N is large, this represents an 18% increase in execution time. It is 
also possible to eliminate tables entirely and recalculate the trigonometric data for 
each transform. Repeated use of the relations 

x 1+ cos x . x -cos x 
cos- V and sin-2=V 2 Cos 

2 2 a2 2 

adds another 9 N machine cycles for a total increase in cost of about 39%. 
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